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SUMMARY 
A timedependent numerical algorithm is developed for the two-fluid model Euler of TLNS (thin layer Navier- 
Stokes) equations. The analysis is based on a MUSCL (monotone upstream central scheme for conservation laws)- 
type flux-vector-splitting scheme with the multi-level technique. This algorithm is applied to investigate JPL (Jet 
Propulsion Laboratory) nozzle flow. Calculated results for both one- and two-phase flows are given to show the 
accuracy, the computational efficiency and the particle influence on the flow field. 
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1. INTRODUCTION 

For a solid propellant rocket motor design the accurate analysis of flows throughout the entire passage of 
a nozzle is very important. Experimental studies of JPL nozzle flow have been presented by Cuffel and 
co-worker~'-~ and many investigations have appeared in the literature.4d Usually the solid propellant 
exhaust stream contains alumina oxide particles. In these flows, transfer of momentum and heat between 
gas and particles often dissipates energy in the gas, resulting in a decrease in the nozzle efficiency. 
Therefore a two-phase flow study is necessary for evaluating the rocket motor's performance. 

In 1982 Crowe' reviewed the numerical models for dilute gas-particle flows. Generally speaking, 
there are two approaches commonly used. One is the two-fluid model (or Eulerian-Eulerian) approach 
and the other is the trajectory (or Eulerian-Lagrangian) approach. The former model treats the two 
phases as separate media similar to two single phases, where the effect of two-way coupling is 
incorporated as source terms. Chang' used a two-fluid model to solve inviscid JPL nozzle flow by a 
MacCormack algorithm. The two-fluid model has the advantage of using numerical procedures already 
established for single-phase flow. In the second approach the gas flow is initially solved without 
particles. Particle trajectories are then calculated through the gas flow field. Particle source terms are 
evaluated at each cell. The gas flow is then resolved with these source terms. This process is repeated 
until the flow field ceases to change. The second method is more easily adaptable to multi-size particles. 
Hwang and Chang' applied the trajectory model and MacCormack scheme to the same JPL nozzle flow 
problem. 
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The MacCormack scheme lacks dissipation. In practice an extra artificial dissipation term is needed 
to overcome numerical oscillation and instability problems. The upwind scheme incorporates the 
natural dissipation. Thus no additional artificial viscosity is required as in the MacConnack scheme. 
The purpose of this paper is to apply the flux-vector-splitting algorithm to solve two-phase model flow. 
A multi-level technique is developed to reduce the computational time. This algorithm is applied to 
investigate both Euler and TLNS JPL nozzle flow to show performance inefficiences arising fiom the 
effect of particles. 

2. MATHEMATICAL MODEL 

2. I .  Governing equations 

For high-Reynolds-number flow problems the complete Navier-Stokes equations can be approxi- 
mated by the TLNS equations, where the viscous terms containing derivatives in the direction parallel to 
the body surface are neglected. Considering the particles as a continuum fluid, the assumptions 
concerning the particles are as follows. (i) The particles are solid spheres with a uniform diameter. (ii) 
The volume of each particle is very small and can be neglected; therefore there is no particle pressure. 
(iii) The gas and particles do not undergo phase changes, so there is no mass coupling. (iv) For dilute 
particles there are no interactions between the particles. (v) The exchange between the two phases is the 
Stokes drag force for momentum transfer and convection for heat transfer. 

Under the above assumptions the dimensionless axisymmetric governing equations expressed in 
curvilinear co-ordinates are 
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1 H = -  
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where the subscript 'p' denotes particles, The weak conservation form of the system equations can be 
reduced to the Euler form (by omitting the viscous flux vector term F,) or to the TLNS equations. The 
system can also be used for one-phase (gas only) flow with N =  1 or for two-phase flow with N = 2. 

Here the contravariant velocities are U = t X u  + tyv and V = qxu + qyv. The metric terms are 
tx = Jy,, tY = -Jx,,, qx = -Jyc and qy = Jxc, with J-' the cell volume. The total energy of the gas is 

P 
Y - 1  

e = - + 0-5p(d + I?) 

and that of the particles is 

where cs is the particle specific heat and c, is the gas specific heat (the overbar indicates a dimensional 
quantity). The coefficients in the viscous vector F, are 

a2 = $lXllYP3 a3 = (llI + :$)% a - 4 2  
1 - (3% + ll+ 

a4 = y(q: + q 2 ) ( h  Pr, + g), with Prl = 0.72, Prt = 0.9, 

and 

k determined by turbulence model, 1+c 
T + C '  

p, = T3J2 - P = PI +A7 

110.4 Re = P n f 4 e f L f  T = - ,  YP C = - ,  
P T,, k f  

The momentum relaxation time is given as 

- 
where tmo = & (jjs$/jil) iimf/imf and A, = C,/C, stokes, with p ,  the particle intrinsic density and dp 
the particle diameter. The relationship between pp and ps is p, = Np(n/6)p,d,3/Y, where Np is the 
number of particles in the control volume Y .  The particle drag coefficient C,  depends on the relative 
Mach number 
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and the relative Reynolds number 

In the present study, since Mn is small (Mnp < 0-S), the effect of Mn, on CD can be neglected. The 
empirical drag coefficients are SO 

042  24 
forRe, < 3 x lo', cD Stokes = -. 24 C, = - (1 + 0.1SRe:687) + 

Rep 1 +4-25 x 104Re,-'.16 Rep 
The energy relaxation time is given as 

tm t --, - Bo (3) 

where t,,, = i t , , & - ,  and Bo = Nu/NuSmk,. The empirical Nusselt numbers are" 

Nu = 2 + 0-4S9Re:55Prp'33, Nustokes = 2* 

2.2. Turbulence model 

An algebraic two-layer Baldwin-Lomax turbulence model12 is used in this study. The Baldwin- 
Lomax model is efficient and accurate compared with more complex models. The interaction of the gas 
flow and the solid particle turbulence is complex and not well understood at present. In this study 
Melville and Bray's algebraic eddy viscosity f~rmulation'~ is adopted to describe the influence of the 
particles on turbulence. The turbulent viscosity coefficient 4 is decreased by the particles in the ratio of 
the particle loading p p / p  from the corresponding one-phase flow p,,,: 

- 1  

4 = K a ( l + ? )  . (4) 

3. NUMERICAL METHOD 

The finite volume approach is used for the formulation of difference equations, i.e. numerical fluxes are 
defined at the cell interfaces and dependent variables are defined at the centroids. The governing 
equation (1) can be discretized by an explicit scheme based on the upwind difference of the split flux for 
the convective terms and the central difference for the viscous term as 

= RHS. ( 5 )  
The forward and backward upwind difference operators for the convective term in the <direction are 
defined by 
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where Ef are the split fluxes and Q&2,k and Qj$12,k are the upwind-biased and downwind-biased 
interpolation values at the interface j + 1/2 respectively. 

3.1. F l u  splitting 

to result in smoother solutions near sonic points.'4 For supersonic flow, lMtl > 1, 
Van Leer flux vector splitting has continuously differentiable flux contributions and has been shown 

E + = E  and E - = O ,  Mt > 1 ,  
(7) E + = O  and E - = E ,  Mt <-1, 

and for subsonic flow, IMtl < 1, 

where 

Note that the split energy flux was reformulated in contrast with the original version and that the new 
formulation has the advantage of simplicity and efficiency.ls For the particle phase flow there is only 
one eigenvalue in the convective flux, which is split by the Steger and Warming method16 as 

Here the interface variables are obtained by MUSCL extrapolation with a third-order smooth limiter'4 
from cell centre values of the primitive variables p,  u, w,p, pp, up, w,, and T . It was found that using 
primivite variables yields better convergence for flows with strong shocks. I3 

3.2. llme integmtion 

A two-stage Runge-Kutta method with optimal coefficients'* of the form 

Q* = Q" + 0.6807 RHS(Q"), 

Q"" = Q" + RHS(Q*) (1 1) 
is used to integrate equation (5 )  in time, to improve the accuracy and extend the explicit scheme's 
stability region, Here the gas phase residual RHS is replaced by a weighted average of neighbourhg 
residuals with the implicit residual smoother to increase the available time step used in the Runge-Kutta 
methd. 

(1 - 0.263( 1 - 0.26;)RHs'"e = RHS, (12) 

where 6: and 6; are seconddifference operators. 
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For accelerating the convergence to a steady state, a space-varying At close to the local stability 
1irnit19,20 

CFL 
(13) At = 1w + I VI + + t; + q; + q;) 

is used, where CFL is taken as 1.0 for Euler flow and 0.6 for turbulence flow. 

3.3. Multi-level technique 

One would like to use a coarse grid system to reduce the computational time in the numerical 
computations. However, the solution obtained from a coarser mesh is not sufficiently accurate owing 
to large truncation errors. One way to improve this is the multi-level technique. In the present work 
the coarse grid is formed by eliminating every second line of the next fine mesh in a crosswise 
direction. The computation starts from the first coarse mesh, then the flow field properties are 
interpolated back to the next fine mesh after the structure of the flow field has been built; the 
particle equations are counted from the second mesh and the viscous diffusion terms are evaluated 
only on the finest grid. Therefore the computational efficiency is improved while maintaining low 
truncation errors. 

4. INITIAL AND BOUNDARY CONDITIONS 

The quiescent gas and particle-free assumptions in the whole field are taken as initial condition and 
reference data (i.e. jmf, iEf, Pnf, ?;ef, kf). 

At the inlet boundary the chamber total temperature T,,, total pressure P,,, and flow angle are 
specified. The upstream-xunning Riemann invariant R- is extrapolated from the inside domain (‘in’) to 
the boundary (‘b’) as 

The total velocity at the inlet, KOdb, is found from the total temperature and isentropic relations” 

(15) 
(7 - 1 )Rb + JP( 1 - ,)(Rb )* + 4(Y + 1 > c p  Ttolall 

Y+l 
vtotal, = 

The quantities p and P are then determined by isentropic relations. For two-phase flow the particle mass 
fraction 9 = p,/(p + pp), velocity lag and temperature ratio are also specified at the inlet. 

For subsonic outflow the exit static pressure is specified and the other variables are extrapolated 
from those in the interior. For supersonic outflow all flow variables are extrapolated from upstream. 

On the axisymmetric line the symmetric boundary conditions require that the normal gradients of 
density, tangential velocity, gas pressure and particle temperature be zero. The normal velocity is 
also set to zero. 
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On the solid surface the velocity must meet the tangent condition for Euler flow and the no-slip 
condition for viscous flow. All other flow variables are found by extrapolation, except for p and p 
for Euler flow which are determined by the Riemann invariant and entropy equations 

5.  RESULTS 
5.1. Grid system 

Consider the JPL axisymmetrical45"-15" convergent-divergent conical nozzle. Figure 1 shows the 
190 x 41 and 190 x 51 grid systems for Euler and viscous flows respectively. The length scales are 
nondimensionalized by the throat diameter trrf = 0.0406 m The grid systems are generated by the 
solution of the Poisson equation, which automatically generates a smoothly varying grid that conforms 
to an arbitrary body and allows grid point clustering near the boundary.21 

5.2. One-phase flow 

The fluid is initially set at sea level with zero velocity. Under reservoir conditions of cod = 555 k, Fmd = 10-34 x lo5 N/m2 and zero inflow velocity angle the flow is accelerated from 
subsonic to supersonic in the nozzle. Figure 2 depicts the variation in Mach number along the wall and 
centreline in the Euler computation. For comparison, experimental data" and previous numerical 
r e ~ u l t s ~ ' ~  are also plotted in Figure 2. It is seen that the present predictions agree well with the 

Figure I .  Grid system 
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Figure 2. Mach number profiles for Euler one-phase flow 

experimental data. The difference between the coarser (145 x 41) and finer (190 x 41) grid solutions is 
slight, so we can conclude that the solution will only be minimally affected by further grid refinement. 
Serra4 gives a sharper shock profile, but it is undershot after the shock. Liang and Chan’s6 results fail to 
predict the shock location. Since the nozzle contour has a rapid contraction followed by a throat with a 
small radius of curvature, the flow near the throat wall is overturned and inclinded to the downstream 
wall. A weak shock is thus fonned to turn the flow parallel to the wall. From the inlet the Mach number 
increases more rapidly along the wall than along the centreline. In the throat plane the Mach number is 
1.3 on the wall and 0.8 on the axis. Along the wall the Mach number decreases slightly fiom 1-79 to 1.72 
near the circular throat and divergent junction and then increases slowly in the downstream direction. 
Along the centerline the Mach number increases linearly until = 1.97 and then drops suddenly 
from 3.5 to 2.6. The reductions in Mach number near the throat wall and downstream centreline are 
related to the shock wave. In Figure 3 the calculated Mach number contours exhibit a weak oblique 
shock emanating from the throat wall and intersecting the downstream centreline and then being 
reflected. 
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Figure 3. Mach number contow for Eder one-phase flow 
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Figure 4. Convergence histories for Eula one-phase flow 

The convergence histories are shown in Figure 4 using one-, two- and three-level mesh procedures 
respectively. There exist large discontinuities which reflect the perturbation of the numerical solution 
due to multi-level grid changes. The three-level case is the best. The computing time is much reduced 
from 46.09 min for the single-mesh case to 20.68 min for the three-level mesh case on a PC-586DX66 
computer. By employing the present multi-level strategy, only 45% of the computational time with a 
conventional fixed grid is needed. In this aspect the present numerical procedure can be regarded as an 
efficient one. 

Calculations are also carried out to study the effect of viscosity on the flow structure. The JPL nozzle 
viscous flow is considered for Re = 9.46 x lo5 (based on the throat diameter at sea level). The 
turbulence boundary layer alters the apparent size of the nozzle and thus shifts the supersonic Mach 
contours backwards and changes the shock wave position forwards, as shown by the Mach number 
profiles and contours in Figure 5. 
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Figun 5. Comparison of Mach number profiles and contours between Eula and ~ u l e n t  one-phase flows 
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Figure 6. Particle density contours pp/=* for Euler flow 

0 1.400 
t 2100 
B 1.WO 
4 11m 
e 1.w 
I 1rm 
7 IZW 

5 OJW 
4 OJW 

2 0.200 

a i.om 

1 o.4m 

I a o o i  

X'L,., 

0 4.000 
B 3.500 
7 3.000 
6 2.500 
5 2.000 
1 1 %  

5 1.m 

2 0.500 
I 0.001 

5.3. Two-phase flow 

For the gas-particle fully coupled flow simulation, related data presented by Chang' are used: 

c, = 1-38 x lo3 J kg-' K-', c, = 1-07 x lo3 J kg-' K', 3, = 4004.62 kg m-3. 

Two different-sized particles with the same mass hction 4 = 0.3 are considered. The particle radii Fp 
are 1.0 and 10.0 pm. The inlet velocity and temperature of the particles are presumed to be the same as 
those of the gas phase. 

5.3.1. Particle trajectories. For most flows the domain occupied by the particles is less than the 
entire flow region. There is a limiting particle streamline marking the particle-fiee zone (defined as 
pp/pnf < 0.001). Several ranges of particle concentration occur in the particle domain. 

Figure 6 shows the Euler flow particle density contours for the two different sizes of particles. 
Although the gas is simplified as inviscid, the Stokes drag force is not assumed to be negligible. For the 
small particles the drag force is greater than the inertia force, so particles can more easily be carried by 
the gas flow. On the other hand the large particles cannot effectively turn around the throat comer 
because their inertia tends to retain their initial momentum. The particle-free zone downstream of the 
throat is much greater for the large particles than for the small particles. Restricted by the nozzle 
contour, there exists a particle concentration range near the convergent wall and the partial density 
contours are clustered under the limiting particle streamline, especially in the case of the large particles. 

The convergence histories of the small-particle flow simulation are presented in Figure 7 to show the 
multi-level efficiency. Even though the total numbers of iterations are almost the same for the single- 
level and three-level simulations, the computing time is shortened from 127.16 min to 75.02 min, i.e. 
only 59 per cent of the computational time is needed for the latter. 

Computational results of particle density contours by TLNS are shown in Figure 8. The viscous effect 
reduces the inertia force in the boundary layer. There is an obvious particle-free zone starting from near 
the inlet along the wall. Therefore the particle-free zone for the small particles is larger in the 
downstream region than that in the corresponding Euler case, The large particles with large inertia tend 
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Figure 7. Convergence histories for Eulcr two-phase flow 

to keep their initial momentum and impact on the convergent surface again. This situation can be clearly 
seen h m  the velocity vector analysis in Figures 9 and 10. 

5.3.2. Efect onflowproperties. Since the particle density is larger than the gas density, in two-phase 
flow the gas velocity is reduced by the particles. The influence of particles on the fluid flow depends on 
size and number of particles. The smaller the particle size, the smaller is the relaxation time required. 
The interaction between the two-phase flow is thus increased. For a fixed mass fraction a decrease in 
the particle size means that more particles are present in the flow and the interaction is also 
strengthened. Figure 11 shows the gas Mach number distributions along the wall and centreline for 
Euler one- and two-phase flows. The gas Mach number is reduced in the two-phase flow field and the 
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Figure 8. Particle density contours p,/prrr for turbulent flow 
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Figure 9. Small-particle velocity vectors for turbulent flow 
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Figure 10. Large-particle velocity vectors for turbulent flow 
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Figure 12. Comparison of Eulcr two-phase Mach number distributions with previous work 

reduction becomes large for the case with the small particles. Owing to the particle-fiee zone, the Mach 
number difference between the one- and two-phase flows along the wall is smaller than that at the 
centreline. This is physically correct. A comparison of the present results with previous numerical 
calculations' is shown in Figure 12. The agreement among all the computations is generally good. 
Similar phenomena also occur for the viscous flow. However, large changes in the Mach number 
contours as compared with the one-phase flow can be found in Figure 13. For the two-phase flow there 
is a greater velocity merit along the limiting particle streamline due to the high gradient of the 
particle concentration. 

The temperature distributions along the centreline are plotted in Figure 14. This indicates that the 
gaseous flow for the two-phase flow is heated by the hot particles. A comparison of Euler and TLNS gas 
temperature profiles along the wall is plotted in Figure 15. Because of the high concentration of hot 
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Figure 14. Comparisonm of Euler and turbulent flow temperature profiles along centreline 
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Figure 15. Comparison of Euler and turbulent flow gas temperature profiles along wall 

particles on the centreline, the temperature difference between one-and two-phase gas at the wall is 
smaller than that at the centreline. 

The thrust of the JPL nozzle estimated by isentropic t h e o s  is 2165 N. The results of numerical 
calculation by 

F =rive +A$, = (p,v, +P,)A, 

are given in Table 1. 

Table I. JPL nozzle thrust 

One-phase rp = I.Opm rp = 10.0 p 

Euler 2114 N 1636 N 1948 N 
Turbulent 2082 N 1595 N 1900 N 
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As seen in the table, the Euler one-phase flow result is close to that of classical theory. In turbulent 
flow the viscous effect dissipates approximately 2 per cent thrust compared with Euler flow. A 
significant loss in thrust is due to the low velocity of the gas flow and heat unconverted to directed 
kinetic energy in two-phase flow. For small particles the gas-particle interaction is more violent and the 
thrust loss is increased to 23 per cent. The thrust loss due to large particles is about 8 per cent. Therefore 
the two-phase effect is more serious than the viscous effect and cannot be neglected. 

6. CONCLUSIONS 

Since the MUSCL-type flux-vector-splitting scheme possesses natural dissipation, no additional 
artificial viscosity is required as it is for the MacCormack scheme to stabilize the computation. The 
numerical computation proves that the multi-level technique is an effective tool for solving both one- 
and two-phase flows. Results show good accuracy when compared with experimental data for Euler 
one-phase flow. The method is extended to solve TLNS and two-phase flow; the computational results 
are physically reasonable and also in good agreement with previous studies. The presence of particles 
has a dramatic effect on the nozzle flow field and thrust. To investigate a real two-phase flow, it is not 
permissible to use the single-phase model. 
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