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SUMMARY

A time-dependent numerical algorithm is developed for the two-fluid model Euler of TLNS (thin layer Navier—
Stokes) equations. The analysis is based on a MUSCL (monotone upstream central scheme for conservation laws)-
type flux-vector-splitting scheme with the multi-level technique. This algorithm is applied to investigate JPL (Jet
Propulsion Laboratory) nozzle flow. Calculated results for both one- and two-phase flows are given to show the
accuracy, the computational efficiency and the particle influence on the flow field.
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1. INTRODUCTION

For a solid propellant rocket motor design the accurate analysis of flows throughout the entire passage of
a nozzle is very important. Experimental studies of JPL nozzle flow have been presented by Cuffel and
co-workers' ™ and many investigations have appeared in the literature.* Usually the solid propeliant
exhaust stream contains alumnina oxide particles. In these flows, transfer of momentum and heat between
gas and particles often dissipates energy in the gas, resulting in a decrease in the nozzle efficiency.
Therefore a two-phase flow study is necessary for evaluating the rocket motor’s performance.

In 1982 Crowe’ reviewed the numerical models for dilute gas—particle flows. Generally speaking,
there are two approaches commonly used. One is the two-fluid model (or Eulerian—Eulerian) approach
and the other is the trajectory (or Eulerian—Lagrangian) approach. The former model treats the two
phases as separate media similar to two single phases, where the effect of two-way coupling is
incorporated as source terms. Chang® used a two-fluid model to solve inviscid JPL nozzle flow by a
MacCormack algorithm. The two-fluid model has the advantage of using numerical procedures already
established for single-phase flow. In the second approach the gas flow is initially solved without
particles. Particle trajectories are then calculated through the gas flow field. Particle source terms are
evaluated at each cell. The gas flow is then resolved with these source terms. This process is repeated
until the flow field ceases to change. The second method is more easily adaptable to multi-size particles.
Hwang and Chang9 applied the trajectory model and MacCormack scheme to the same JPL nozzle flow
problem.
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The MacCormack scheme lacks dissipation. In practice an extra artificial dissipation term is needed
to overcome numerical oscillation and instability problems. The upwind scheme incorporates the
natural dissipation. Thus no additional artificial viscosity is required as in the MacCormack scheme.
The purpose of this paper is to apply the flux-vector-splitting algorithm to solve two-phase model flow.
A multi-level technique is developed to reduce the computational time. This algorithm is applied to
investigate both Euler and TLNS JPL nozzle flow to show performance inefficiences arising from the
effect of particles.

2. MATHEMATICAL MODEL
2.1. Governing equations

For high-Reynolds-number flow problems the complete Navier—Stokes equations can be approxi-
mated by the TLNS equations, where the viscous terms containing derivatives in the direction parallel to
the body surface are neglected. Considering the particles as a continuum fluid, the assumptions
concerning the particles are as follows. (i) The particles are solid spheres with a uniform diameter. (ii)
The volume of each particle is very small and can be neglected; therefore there is no particle pressure.
(iii) The gas and particles do not undergo phase changes, so there is no mass coupling. (iv) For dilute
particles there are no interactions between the particles. (v) The exchange between the two phases is the
Stokes drag force for momentum transfer and convection for heat transfer.

Under the above assumptions the dimensionless axisymmetric governing equations expressed in
curvilinear co-ordinates are
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where the subscript ‘p’ denotes particles. The weak conservation form of the system equations can be
reduced to the Euler form (by omitting the viscous flux vector term F, ) or to the TLNS equations. The
system can also be used for one-phase (gas only) flow with N=1 or for two-phase flow with N=2.

Here the contravariant velocities are U = {u+ ¢ v and V = n,u+n,v. The metric terms are
& =y, & = —Jx,, n, = —Jy; and n, = Jxg, with J =1 the cell volume. The total energy of the gas is

e='y—f—I+0-5p(u2+vz)
and that of the particles is

C, 1
h,=p (T _—5—+o-5(u2+v2)),
P P pCp'}’—l P P

where C, is the particle specific heat and fp is the gas specific heat (the overbar indicates a dimensional
quantity). The coefficients in the viscous vector F, are
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oo W .
ay = y(n} + r1§)(},,—r‘I + P_r,)’ with Pr, = 072, Pr, = 0.9,
and
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The momentum relaxation time is given as
t
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where £, = l‘—s(ﬁsaf, /1) pes/Leee and Ay = Cp/Cp siores» With P the particle intrinsic density and 3,,
the particle diameter. The relationship between p, and p is p, = Np(n/6)psd3 /¥, where N, is the
number of particles in the control volume ¥". The particle drag coefficient Cj, depends on the relative

Mach number
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and the relative Reynolds number

pd a _ _ ) )
Rep et ‘/[(u p)2 + (U - vp)Z]v P = PPref> U= flles.

In the present study, since Mn,i is small (Mn,, < 0-5), the effect of Mn, on Cp, can be neglected. The

empirical drag coefficients are

24 0.687 0.42 s 24
1 =—.
Cp = Rp(1+015Re )+ 7425  10°Re, 716 for Re, < 3 x 107, Cb stokes Re,
The energy relaxation time is given as
ho
h =72 3)

By

where ty = 3 £,,,Pr, and By = Nu/Nug,.,. The empirical Nusselt numbers are!!

Nu =2+ 0-459Re) > Pr{"®, Nugiopes = 2.
2.2. Turbulence model

An algebraic two-layer Baldwin-Lomax turbulence model'? is used in this study. The Baldwin—
Lomax model is efficient and accurate compared with more complex models. The interaction of the gas
flow and the solid particle turbulence is complex and not well understood at present. In this study
Melville and Bray’s algebraic eddy viscosity formulation'? is adopted to describe the influence of the
particles on turbulence. The turbulent viscosity coefficient y, is decreased by the particles in the ratio of
the particle loading p,,/p from the corresponding one-phase flow p,:

p -1
= uto( ”) : @)
p
3. NUMERICAL METHOD

The finite volume approach is used for the formulation of difference equations, i.e. numerical fluxes are
defined at the cell interfaces and dependent variables are defined at the centroids. The governing
equation (1) can be discretized by an explicit scheme based on the upwind difference of the split flux for
the convective terms and the central difference for the viscous term as
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The forward and backward upwind difference operators for the convective term in the &-direction are
defined by
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where E* are the split fluxes and 07, , and O, 1 /2.4 are the upwind-biased and downwind-biased
interpolation values at the interface j + 1/2 respectively.
3.1. Flux splitting

Van Leer flux vector splitting has continuously differentiable flux contributions and has been shown
to result in smoother solutions near sonic points.'* For supersonic flow, [M;| > 1,

E*=E and E" =0, M;>1,

EtY=0 and E =E, M; < -1, 0
and for subsonic flow, |M;| < 1,
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where

grad(§) = V(& + &), M; = fE = £pa(M, £ 1)2/4.

Note that the split energy flux was reformulated in contrast with the original version and that the new
formulation has the advantage of simplicity and efficiency.'® For the particle phase flow there is only
one eigenvalue in the convective flux, which is split by the Steger and Warming method'® as
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Here the interface variables are obtained by MUSCL extrapolation with a third-order smooth limiter'*
from cell centre values of the primitive variables p, u, v, p, p,,, 4, v, and I:r It was found that using
primivite variables yields better convergence for flows with strong shocks.'
3.2. Time integration

A two-stage Runge—Kutta method with optimal coefficients'® of the form
0* = 0" + 0-6807 RHS(Q"), (10)

Q"' = 0" + RHS(Q*") an
is used to integrate equation (5) in time, to improve the accuracy and extend the explicit scheme’s
stability region. Here the gas phase residual RHS is replaced by a weighted average of neighbouring
residuals with the implicit residual smoother to increase the available time step used in the Runge—Kutta
method:

(1 —0282)(1 — 0-263)RHS* = RHS, (12)

where 6% and 6,2, are second-difference operators.



926 H. T. CHANG, L. W, HOURNG AND L. E. CHIEN

For accelerating the convergence to a steady state, a space-varying Ar close to the local stability
limit'®2°

CFL
At = I
Ul+ VI +ay/ (& + &+ + 1)

(13)

is used, where CFL is taken as 1.0 for Euler flow and 0-6 for turbulence flow.

3.3. Multi-level technique

One would like to use a coarse grid system to reduce the computational time in the numerical
computations. However, the solution obtained from a coarser mesh is not sufficiently accurate owing
to large truncation errors. One way to improve this is the multi-level technique. In the present work
the coarse grid is formed by eliminating every second line of the next fine mesh in a crosswise
direction. The computation starts from the first coarse mesh, then the flow field properties are
interpolated back to the next fine mesh after the structure of the flow field has been built; the
particle equations are counted from the second mesh and the viscous diffusion terms are evaluated
only on the finest grid. Therefore the computational efficiency is improved while maintaining low
truncation errors.

4. INITIAL AND BOUNDARY CONDITIONS

The quiescent gas and particle-free assumptions in the whole field are taken as initial condition and
reference data (i.e. P.f, Qrors Prors Trets Hret)-
At the inlet boundary the chamber total temperature T, total pressure P, and flow angle are

specified. The upstream-running Riemann invariant R~ is extrapolated from the inside domain (‘in’) to
the boundary (‘b’) as

2
Ry = (le - y_—“l) D Ve =W+, (14)

The total velocity at the inlet, ¥y, , is found from the total temperature and isentropic relations®’

(0 — DRy + V[2(1 — DRy + 44 + 1)C, Tgral)

7+ 1 (5

Vtotalb =

-1 _
@y =1 (Vi — B5)- (16)

The quantities p and P are then determined by isentropic relations. For two-phase flow the particle mass
fraction ¢ = p,/(p + p,,), velocity lag and temperature ratio are also specified at the inlet.
For subsonic outflow the exit static pressure is specified and the other variables are extrapolated
from those in the interior. For supersonic outflow all flow variables are extrapolated from upstream.
On the axisymmetric line the symmetric boundary conditions require that the normal gradients of
density, tangential velocity, gas pressure and particle temperature be zero. The normal velocity is
also set to zero.
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On the solid surface the velocity must meet the tangent condition for Euler flow and the no-slip
condition for viscous flow. All other flow variables are found by extrapolation, except for p and p
for Euler flow which are determined by the Riemann invariant and entropy equations

—1/ 2a .+ v
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1, iyn)l/(yﬂl) Pv >
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5. RESULTS

5.1. Grid system

Consider the JPL axisymmetrical 45°-15° convergent—divergent conical nozzle. Figure 1 shows the
190 x 41 and 190 x 51 grid systems for Euler and viscous flows respectively. The length scales are
non-dimensionalized by the throat diameter L, = 0-0406 m. The grid systems are generated by the
solution of the Poisson equation, which automatically generates a smoothly varying grid that conforms
to an arbitrary body and allows grid point clustering near the boundary.?!

5.2. One-phase flow

The fluid is initially set at sea level with zero velocity. Under reservoir conditions of
Tioat = 555k, Py = 10-34 x 10° N/m? and zero inflow velocity angle the flow is accelerated from
subsonic to supersonic in the nozzle. Figure 2 depicts the variation in Mach number along the wall and
centreline in the Euler computation. For comparison, experimental data' and previous numerical
results*® are also plotted in Figure 2. It is seen that the present predictions agree well with the

Y/IL,, 190x41 Grid System for Euler Flow

0.0 1.0 2.0 X/L

ral

-1.0 0.0 1.0 20 x}LmI

Figure 1. Grid system
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Figure 2. Mach number profiles for Euler one-phase flow

experimental data. The difference between the coarser (145 x 41) and finer (190 x 41) grid solutions is
slight, so we can conclude that the solution will only be minimally affected by further grid refinement.
Serra* gives a sharper shock profile, but it is undershot after the shock. Liang and Chan’s® results fail to
predict the shock location. Since the nozzle contour has a rapid contraction followed by a throat with a
small radius of curvature, the flow near the throat wall is overturned and inclinded to the downstream
wall. A weak shock is thus formed to turn the flow parallel to the wall. From the inlet the Mach number
increases more rapidly along the wall than along the centreline. In the throat plane the Mach number is
1.3 on the wall and 0-8 on the axis. Along the wall the Mach number decreases slightly from 1.79to 1.72
near the circular throat and divergent junction and then increases slowly in the downstream direction.
Along the centerline the Mach number increases linearly until X /L., = 1.97 and then drops suddenly
from 3-5 to 2-6. The reductions in Mach number near the throat wall and downstream centreline are
related to the shock wave. In Figure 3 the calculated Mach number contours exhibit a weak oblique
shock emanating from the throat wall and intersecting the downstream centreline and then being
reflected.
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Figure 3. Mach number contours for Euler one-phase flow



DILUTE GAS-PARTICLE JPL NOZZLE FLOW 929

Computing Time
10" on PC-586DX 66
> ~ — - 1-Level Grid : 46.09™
@ . ~~--2-Level Grid : 23.66™
3 ~—— 3-Level Grid : 20.68™
S 102
= 3
p-1
b=
4
T 4o
10" E' -\'\ N \
< “—.\ —\/\’
PP BN TP SPEPE SA A l-.\l‘"ﬁaﬁon
250 500 750 1000 1250 Number

Figure 4. Convergence histories for Euler one-phase flow

The convergence histories are shown in Figure 4 using one-, two- and three-level mesh procedures
respectively. There exist large discontinuities which reflect the perturbation of the numerical solution
due to multi-level grid changes. The three-level case is the best. The computing time is much reduced
from 46-09 min for the single-mesh case to 20-68 min for the three-level mesh case on a PC-586DX66
computer. By employing the present multi-level strategy, only 45% of the computational time with a
conventional fixed grid is needed. In this aspect the present numerical procedure can be regarded as an
efficient one. ‘

Calculations are also carried out to study the effect of viscosity on the flow structure. The JPL nozzle
viscous flow is considered for Re = 9-46 x 10° (based on the throat diameter at sea level). The
turbulence boundary layer alters the apparent size of the nozzle and thus shifts the supersonic Mach
contours backwards and changes the shock wave position forwards, as shown by the Mach number
profiles and contours in Figure 5.
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Figure 5. Comparison of Mach number profiles and contours between Euler and turbulent one-phase flows
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Figure 6. Particle density contours p, /., for Euler flow

5.3. Two-phase flow
For the gas-particle fully coupled flow simulation, related data presented by Chang® are used:

C,=138x10°Jkg' K™, C,=107x10°Jkg' K™!, p, =4004-62kgm™.

Two different-sized particles with the same mass fraction ¢ = 0-3 are considered. The particle radii 7,
are 1.0 and 10-0 um. The inlet velocity and temperature of the particles are presumed to be the same as
those of the gas phase.

5.3.1. Particle trajectories. For most flows the domain occupied by the particles is less than the
entire flow region. There is a limiting particle streamline marking the particle-free zone (defined as
Pp/ Pres < 0-001). Several ranges of particle concentration occur in the particle domain.

Figure 6 shows the Euler flow particle density contours for the two different sizes of particles.
Although the gas is simplified as inviscid, the Stokes drag force is not assumed to be negligible. For the
small particles the drag force is greater than the inertia force, so particles can more easily be carried by
the gas flow. On the other hand the large particles cannot effectively turn around the throat corner
because their inertia tends to retain their initial momentum. The particle-free zone downstream of the
throat is much greater for the large particles than for the small particles. Restricted by the nozzle
contour, there exists a particle concentration range near the convergent wall and the partial density
contours are clustered under the limiting particle streamline, especially in the case of the large particles.

The convergence histories of the small-particle flow simulation are presented in Figure 7 to show the
multi-level efficiency. Even though the total numbers of iterations are almost the same for the single-
level and three-level simulations, the computing time is shortened from 127-16 min to 7502 min, i.e.
only 59 per cent of the computational time is needed for the latter.

Computational results of particle density contours by TLNS are shown in Figure 8. The viscous effect
reduces the inertia force in the boundary layer. There is an obvious particle-free zone starting from near
the inlet along the wall. Therefore the particle-free zone for the small particles is larger in the
downstream region than that in the corresponding Euler case. The large particles with large inertia tend
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Figure 7. Convergence histories for Euler two-phase flow

to keep their initial momentum and impact on the convergent surface again. This situation can be clearly
seen from the velocity vector analysis in Figures 9 and 10.

5.3.2. Effect on flow properties. Since the particle density is larger than the gas density, in two-phase
flow the gas velocity is reduced by the particles. The influence of particles on the fluid flow depends on
size and number of particles. The smaller the particle size, the smaller is the relaxation time required.
The interaction between the two-phase flow is thus increased. For a fixed mass fraction a decrease in
the particle size means that more particles are present in the flow and the interaction is also
strengthened. Figure 11 shows the gas Mach number distributions along the wall and centreline for
Euler one- and two-phase flows. The gas Mach number is reduced in the two-phase flow field and the
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Figure 8. Particle density contours p,/p,.s for turbulent flow
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Figure 12. Comparison of Euler two-phase Mach number distributions with previous work

reduction becomes large for the case with the small particles. Owing to the particle-free zone, the Mach
number difference between the one- and two-phase flows along the wall is smaller than that at the
centreline. This is physically correct. A comparison of the present results with previous numerical
calculations® is shown in Figure 12. The agreement among all the computations is generally good.
Similar phenomena also occur for the viscous flow. However, large changes in the Mach number
contours as compared with the one-phase flow can be found in Figure 13. For the two-phase flow there
is a greater velocity gradient along the limiting particle streamline due to the high gradient of the
particle concentration.

The temperature distributions along the centreline are plotted in Figure 14. This indicates that the
gaseous flow for the two-phase flow is heated by the hot particles. A comparison of Euler and TLNS gas
temperature profiles along the wall is plotted in Figure 15. Because of the high concentration of hot

YiL

ot

:

05}

“NO AN NBPOPDOOM
-

tf-?(”_’____

0.0 .94

: Xilﬁ—\

Figure 13. Mach number contours for turbulent two-phase flow
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particles on the centreline, the temperature difference between one-and two-phase gas at the wall is
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smaller than that at the centreline.

The thrust of the JPL nozzle estimated by isentropic theory? is 2165 N. The results of numerical

calculation by

are given in Table L.

F=mV,+ AP, = (p.V. + P)A,

Table 1. JPL nozzle thrust

One-phase rp =10 ym rp = 10-0 um
Euler 2114 N 1636 N 1948 N
Turbulent 2082 N 1595 N 1900 N
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As seen in the table, the Euler one-phase flow result is close to that of classical theory. In turbulent
flow the viscous effect dissipates approximately 2 per cent thrust compared with Euler flow. A
significant loss in thrust is due to the low velocity of the gas flow and heat unconverted to directed
kinetic energy in two-phase flow. For small particles the gas—particle interaction is more violent and the
thrust loss is increased to 23 per cent. The thrust loss due to large particles is about 8 per cent. Therefore
the two-phase effect is more serious than the viscous effect and cannot be neglected.

6. CONCLUSIONS

Since the MUSCL-type flux-vector-splitting scheme possesses natural dissipation, no additional
artificial viscosity is required as it is for the MacCormack scheme to stabilize the computation. The
numerical computation proves that the multi-level technique is an effective tool for solving both one-
and two-phase flows. Results show good accuracy when compared with experimental data for Euler
one-phase flow. The method is extended to solve TLNS and two-phase flow; the computational results
are physically reasonable and also in good agreement with previous studies. The presence of particles
has a dramatic effect on the nozzle flow field and thrust. To investigate a real two-phase flow, it is not
permissible to use the single-phase model.
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